Объектив – это сложная линзовая система, формирующая резкое изображение снимаемого объекта на плоскости матрицы аппарата. Важнейшей характеристикой любого объектива является его фокусное расстояние – то есть расстояние (в миллиметрах) от оптического центра объектива до плоскости светочувствительного сенсора. Именно фокусное расстояние определяет угол обзора камеры: чем больше фокусное расстояние, тем меньше угол обзора, тем более крупным (приближенным) выглядит изображение объекта.
Однако, из элементарной геометрии следует, что угол зрения зависит не только от фокусного расстояния, но и от размера матрицы (кадра): чем меньше кадр, тем меньше должно быть фокусное расстояние для передачи одного и того же угла зрения. Так, например, фотокамера с диагональю матрицы 1/1,8 дюйма и фокусным расстоянием объектива 7,6 мм передаёт такую же перспективу, что и аппарат с кадром 1/2,5 дюйма при фокусном расстоянии 6,2 мм. Поэтому, дабы избежать путаницы при сравнении камер с разными размерами матриц, широко используется понятие так называемого эквивалентного фокусного расстояния (ЭФР) для 35-мм пленки. Это довольно удобная «точка опоры», потому что многие фотолюбители уже снимали на пленку и хорошо представляют себе, какой угол зрения обеспечивает объектив с фокусным расстоянием, допустим, 28 мм. Так что наряду с истинным фокусным расстоянием в характеристиках объектива цифровой камеры обычно указывается также ЭФР. Например, для упомянутых выше аппаратов с фокусными расстояниями 7,6 и 6,2 мм ЭФР примерно равно 36 мм.
Само собой, эквивалентное фокусное расстояние относится к истинному как диагональ 35-мм кадра относится к диагонали матрицы аппарата. Например, для матрицы с диагональю 1/2,7 дюйма истинное фокусное расстояние меньше ЭФР в 6,5 раз, для 1/1,8-дюймовой матрицы этот коэффициент равен 5, для 2/3-дюймовой – 4, для формата APS-С, применяемого в большинстве цифровых «зеркалок» – 1,6 и т.д. Очевидно также, что для объективов, рассчитанных на размер кадра 35 мм, ЭФР просто соответствует истинному фокусному расстоянию.
Нормальные объективы, то есть объективы, позволяющие получать изображения с перспективой, близкой к восприятию человека (46 градусов), имеют ЭФР около 50 мм. ЭФР сверхширокоугольных объективов составляет 20 мм и меньше, широкоугольных – 24-35 мм, длиннофокусных (телеобъективов) – 90 и больше.
Грубо можно классифицировать оптику фотоаппаратов на объективы с постоянным и переменным фокусными расстояниями (первые ещё называют «фиксфокальными», а вторые – зум-объективами, вариообъективами или трансфокаторами). Из названий понятно, что фокусное расстояние «фиксфокальных» объективов жёстко зафиксировано на конкретном значении, тогда как у вариообъективов оно может изменяться в определенном диапазоне. Изменение фокусного расстояния может производиться как вручную с помощью специального кольца на объективе (как правило, у сменных объективов), так и посредством электрического привода (у камер с несменной оптикой). Диапазоны фокусных расстояний у зум-объективов бывают самыми разными, однако типичным для компактных камер является «вилка» вокруг нормального (50 мм) фокусного расстояния. Применительно к цифровым «мыльницам» чаще всего вам будет встречаться диапазон 35-105 мм в 35-мм эквиваленте. Отношение наибольшего фокусного расстояния к наименьшему является коэффициентом оптического увеличения (кратностью зума), то есть той цифрой, которую обычно гордо указывают на коробке или на самом фотоаппарате. В нашем примере объектив обеспечивает трехкратное увеличение (105:35).
Зум-объектив, безусловно, очень хорош тем, что позволяет фотографировать из одного и того же положения достаточно разнообразные сюжеты. Особенно характерным примером являются так называемые «ультразумы» (объективы с 10-12-кратным увеличением), дающие возможность с равным успехом снимать как пейзажи, так и, например, птиц, сидящих высоко на ветках. Вопреки расхожему среди фотографов выражению о том, что «лучший зум – это ноги», существует масса объектов, к которым «ногами» подобраться невозможно. Так что хороший вариообъектив с широким диапазоном фокусных расстояний способен оказать фотографу неоценимую услугу. Увы, платой за такую универсальность являются неизбежные потери в светосиле и в качестве изображения за счет аберраций. О них мы сейчас и поговорим немного подробнее.
Аберрации – это искажения изображения, вызванные тем, что в реальных объективах невозможно обеспечить условия прохождения лучей, характерные для идеальных оптических систем. Эти условия выполняются только в тех случаях, когда изображение, формируемое объективом, получается с помощью узких приосевых пучков монохромного света, составляющих достаточно малые углы с поверхностью объектива (эти лучи еще называют параксиальными). Использование широких пучков, проходящих под большими углами, приводит к тому, что лучи, исходящие из какой-либо точки в пространстве предметов, не сходятся в одной точке в пространстве изображений. Это несхождение приводит к различным неприятным эффектам: окрашиванию контрастных контуров изображения, искажению геометрии картинки, нерезкости на периферии кадра и т.д.
Проще всего представить себе сущность аберраций на примере обычной лупы: в центре лизны мы всегда видим чёткое изображение, чего никак не скажешь о её краях. Закрыв края линзы непрозрачной пластиной с отверстием посередине (и, тем самым, сократив рабочий диаметр линзы), можно добиться значительного уменьшения аберраций в нашей простейшей оптической системе. В реальных объективах роль пластины играет диафрагма – механизм, позволяющий регулировать диаметр отверстия («дырку») в некоторых пределах. Открытие или закрытие диафрагмы характеризуется диафрагменным числом – отношением фокусного расстояния к диаметру отверстия. Соответственно, чем меньше диафрагменное число, тем больше отверстие диафрагмы, и наоборот. Стандартные значения диафрагменных чисел образованы геометрической прогрессией со знаменателем 1,4 (квадратный корень из 2): 1, 1,4, 2, 2,8, 4, 5,6 и т.д. Впрочем, это не догма – часто встречаются и промежуточные значения.
Понятно, однако, что помимо ограничения аберраций диафрагма влияет также на количество света, попадающего на светочувствительный материал (собственно, именно в этом и заключается её основная функция). Кроме того, от диафрагмы напрямую зависит глубина резкости (об этом мы поговорим чуть позже). Поэтому не всегда диафрагму можно безболезненно закрыть. В связи с этим для компенсации аберраций используется и другой способ. Дело в том, что разные виды линз, выполненные из разных сортов стекла, обладают совершенно различными свойствами. И оказывается, что если специальным образом собрать несколько разных оптических элементов в одну систему, то они способны во многом компенсировать аберрации друг друга. Эта особенность широко используется в проектировании объективов – даже в простых компактных «мыльницах» оптические системы состоят из 6-9 элементов, а в дорогих сменных объективах их количество легко может достигать 15-18. Впрочем, большое количество оптических элементов порождает отдельные проблемы – например, блики, вызванные переотражением света от линз. Это, в свою очередь, заставляет производителей применять более высокотехнологичное, многослойное просветление линз, дорогие марки низкодисперсионного стекла и т.д.
Часто в характеристиках объектива можно прочитать что-нибудь вроде «9 элементов в 7 группах, 1 асферический элемент». Количество элементов – это количество линз, составляющих собственно оптическую систему. Несклеенные между собой или склеенные вместе два и более элементы называются группой. Асферический элемент – это линза несферической формы, позволяющая, грубо говоря, создавать оптические системы с повышенной коррекцией сферических аберраций. Такие линзы довольно сложны в изготовлении и лишь сравнительно недавно получили широкое применение в дешёвых объективах.
Расчет и проектирование сложной оптической системы с компенсацией аберраций – задача, весьма нетривиальная сама по себе. Однако она усложняется многократно, когда речь заходит об объективе с переменным фокусным расстоянием: необходимо учитывать влияние множества факторов во всех положениях зума. Как правило, невозможно скомпенсировать аберрации на всём рабочем диапазоне объектива – какой-то их вид будет сильнее проявляться на минимальном фокусном расстоянии, какой-то – на максимальном, а какой-то – в среднем положении. И чем больше коэффициент увеличения объектива, тем более выраженным будет этот эффект. Кроме того, применение большого количества линз сказывается на размере и весе объектива, а также на его цене (что отнюдь не всегда допустимо).
Поэтому в случае недорогих вариообъективов производители идут на некоторый компромисс. Конструкция таких объективов упрощается, в них используются линзы небольшого диаметра и в меньшем количестве, однако следствием этого является разное максимальное открытие диафрагмы на разных фокусных расстояниях. Так, например, у компактного объектива с рабочим диапазоном 35-105 мм максимальное открытие диафрагмы на фокусном расстоянии 35 мм может соответствовать диафрагменному числу 2,8, на отметке 43 мм – 3,2, на 61 мм – 3,5, на 73 мм – 4, а на 105 мм – 4,8. Получается, что на максимальном фокусном расстоянии объектив пропускает намного меньше света, чем на минимальном. Кроме того, максимально допустимое открытие диафрагмы ограничено и аберрациями – при слишком большом отверстии их уровень будет неприемлемо высок.
Максимально возможное открытие диафрагмы, при котором аберрации остаются на достаточно низком уровне, называется светосилой. Светосила определяется диафрагменным числом и характеризует максимальное количество света, которое может пропустить объектив на том или ином фокусном расстоянии без значительных потерь качества. Большая светосила (т.е. меньшее значение диафрагменного числа) означает лучшее качество объектива, и наоборот.
Подведем краткий итог всему вышесказанному.
1. Чем больше диапазон фокусных расстояний объектива, тем выше уровень его аберраций и, соответственно, тем меньше светосила.
2. Чем компактнее оптическая система, тем сильнее она подвержена аберрациям, поскольку требования к размерам не позволяют разместить в объективе достаточно большое количество оптических элементов. К тому же, чем меньше линза, тем менее она похожа на свою идеальную математическую модель.
3. При прочих равных следует выбирать камеру с более светосильным объективом. Впрочем, большая светосила автоматически подразумевает и более высокую цену.
4. Закрытие диафрагмы положительно влияет на уровень аберраций. Поэтому, если съёмочная сцена достаточно хорошо освещена, лучше не открывать диафрагму максимально.